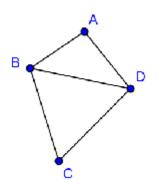
高雄中學 102 學年度第1 學期 高二第2 次期中考數學科 試題卷 (自然組)

命題範圍:高二數學輔教 8-3 正弦定理、餘弦定理;8-4 差角公式;8-5 三角測量

說明:請作答在答案卷上,須將答案填入正確欄位,否則不予計分。

一、填充題:每題完全答對才給分,依下列配分表計分。共69分。

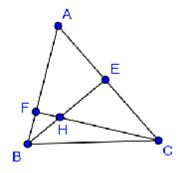

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13
總得分	6	12	18	24	30	36	42	47	52	57	62	66	69

- 1. $\triangle ABC$ 中,已知 $\sin A : \sin B : \sin C = 2:3:4$,求 $\sin B = ?$ (A)
- 2. 利用下表及內插法求 sin 226°54'之值,答案寫到小數點後第四位。(小數點後第五位四捨五入至第四位) (B)

角度	Sin	Cos	Tan	Cot	Sec	Csc	
43° 00'	.6820	.7314	.9325	1.072	1.367	1.466	47° 00'
10'	.6841	.7294	.9380	1.066	1.371	1.462	50'
20'	.6862	.7274	.9435	1.060	1.375	1.457	40'
30'	.6884	.7254	.9490	1.054	1.379	1.453	30'
40'	.6905	.7234	.9545	1.048	1.382	1.448	20'
50'	.6926	.7214	.9601	1.042	1.386	1.444	10'
44° 00'	.6947	.7193	.9657	1.036	1.390	1.440	46° 00'
10'	.6967	.7173	.9713	1.030	1.394	1.435	50'
20'	.6988	.7153	.9770	1.024	1.398	1.431	40'
30'	.7009	.7133	.9827	1.018	1.402	1.427	30'
40'	.7030	.7112	.9884	1.012	1.406	1.423	20'
50'	.7050	.7092	.9942	1.006	1.410	1.418	10'
45° 00'	.7071	.7071	1.000	1.000	1.414	1.414	45° 00'
	Cos	Sin	Cot	Tan	Csc	Sec	角度

- 3. 一漁船在湖上朝某方向直線前進,已知上午 9 時漁船在觀測點 O 的北方偏西 78° ,離 O 點 5 浬處;上午 10 時漁船在觀測點 O 的北方偏東 42° ,離 O 點 20 浬處。則這段時間內,漁船離觀測點 O 的最近距離為 ___(C)___ 浬
- 4. $\cos^2 7.5^\circ + \sin^2 37.5^\circ =$ (D)
- 5. $\triangle ABC$ 中,三邊長分別為 7, 15, 20, $\triangle ABC$ 外接圓半徑為 R,內切圓半徑為 r,則 R+r=? ___(E)___
- 6. $\triangle ABC$ 中, $\angle B$ 為 $\angle C$ 的 雨倍,且 $\overline{AB} = 3$, $\overline{AC} = 5$,則 $\overline{BC} = ?$ ___(F)___
- 7. 設 $\sin\theta \cdot \cos\theta$ 為方程式 $25x^2 15x + \square = 0$ 之二根,其中 二為某實數。求 $50\cos^2\frac{\theta}{2}(\cos\frac{\theta}{2} + \sin\frac{\theta}{2})^2$ 之值為 ___(G)__

8. 如右圖,凸四邊形 ABCD 中, $\overline{AB} = \sqrt{3}$, $\overline{AD} = 2$, $\overline{BC} = \overline{CD} = \overline{DB} = \sqrt{7}$,求 $\overline{AC} = ?$ (H)



- 9. 坐標平面上,O 為原點, $P(\sqrt{3},2\sqrt{3})$, $Q(-\sqrt{7},2\sqrt{7})$,求 $\cos \angle POQ = \underline{\hspace{1cm}}(1)$
- 11. $\triangle ABC$ 中, $\angle A$ 的角平分線交 \overline{BC} 於 D,已知 $\overline{AB}=4$, $\overline{AC}=2$, $\overline{AD}=2$,求 \overline{BC} 。 (K)
- 12. 某人於山腳測得山頂之仰角為30°,由此山腳面向山的方向循15°斜坡上行200公尺,再測山頂的仰角得75°,則山高為多少公尺? (L)
- 13. 一船由西向正東方航行,在其左舷發現有兩座燈塔A與B。在 P_1 點測得A在北15°東方位,B在東30°北方位;該船繼續行駛 30公里到達 P_2 點,再測得A在其北45°西方位,B在其東60°北方位。試求 \overline{AB} 的長度為多少公里? (M)
- 二、多重選:每題至少有一個正確選項。每一題完全答對得7分,只答錯一個選項者得5分,只答錯兩個選項者得3分,答錯三個以上選項或未作答者不給分。共14分。
 - 1. $\triangle ABC$ 中,設 $\overline{BC}=a$, $\overline{CA}=b$, $\overline{AB}=c$, $\triangle ABC$ 之外接圓半徑為R,則下列選項何者必定正確?
 - (1) $R \ge \frac{a}{2}$ (2) 若 $\sin A > \sin B$ 則 $\angle A > \angle B$ (3) $\sin A \cos B + \cos A \sin B > \sin C$
 - (4) $\sin A + \sin B > \sin C$ (5) $\sin(A+B) > \sin A$
 - 2. 已知 0° <a< 45° , 0° <b< 45° ,且a+b= 45° ,則下列選項何者必定正確?
 - (1) $\frac{\tan a \tan b}{1 + \tan a \tan b} = 1$ (2) $(1 + \tan a)(1 + \tan b) = 1$ (3) $\tan(15^\circ + a) \cdot \tan(30^\circ + b) = 1$
 - (4) $\frac{2\tan a}{1+\tan^2 a} = \frac{1-\tan^2 b}{1+\tan^2 b}$ (5) $\frac{1-\tan b}{1-\tan a} = \tan(2a)$

三、計算證明題:請完整寫出計算證明過程,若過程不完整則部份給分。共17分。

- 1. $\triangle ABC$ 中,設 $\angle A=a$, $\angle B=b$, $\angle C=g$,
 - (1) 證明: 等式 $\tan\frac{a}{2}\tan\frac{b}{2}+\tan\frac{b}{2}\tan\frac{g}{2}+\tan\frac{g}{2}\tan\frac{a}{2}=1$ 必定成立。 (6分)

- 2. 如圖,銳角 $\triangle ABC$ 中,已知 $\overline{BC}=20$,E 在 \overline{AC} 上,F 在 \overline{AB} 上,且 \overline{BE} \bot \overline{AC} , \overline{CF} \bot \overline{AB} ,H 為 $\triangle ABC$ 的垂心, $\cos A=\frac{3}{5}$,
 - (1) $\overline{EF} = ?$ (3 %)
 - (2) \overline{AH} = ? (3 分)

得	分

班級:2年	_組
-------	----

一、填充題:每題完全答對才給分,依下列配分表計分。共69分。

答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13
總得分	6	12	18	24	30	36	42	47	52	57	62	66	69

(A)	(B)	(C)	(D)	
(E)	(F)	(G)	(H)	
(1)	(J)	(K)	(L)	
(M)				

二、多重選:每題至少有一個正確選項。每一題完全答對得7分,只答錯一個選項者得5分,只答錯兩個選 項者得3分,答錯三個以上選項或未作答者不給分。共14分。

1.	2.	

三、計算證明題:請完整寫出計算證明過程,若過程不完整則部份給分。共17分。

1.	2.	Α
(1) (6 分)	(1) (3 分)	^
		E
		F
		B C
		В

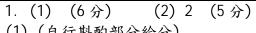
(2) (5分)

(2) (3分)

To: 師,請指正。

高雄中學 102 學年度第 1 學期 高二第 2 次期中考數學科 答案卷 (自然組) <<參考解答>>

-、填充題:每題完全答對才給分,依下列配分表計分。共 69 分。


2	答對格數	1	2	3	4	5	6	7	8	9	10	11	12	13
,	總得分	6	12	18	24	30	36	42	47	52	57	62	66	69

(A)	$\frac{3\sqrt{15}}{16}$	(B)	-0.7302	(C)	$\frac{10\sqrt{7}}{7}$	(D)	$1+\frac{\sqrt{2}}{4}$
(E)	$\frac{29}{2}$	(F)	$\frac{16}{3}$	(G)	32	(H)	$\sqrt{13}$
(1)	$\frac{3}{5}$	(J)	$-\frac{2}{3}$	(K)	$3\sqrt{2}$	(L)	50√6
(M)	10√15						

項者得3分,答錯三個以上選項或未作答者不給分。共14分。

1. 124 2. 345	1.	124	2.	345
---------------------	----	-----	----	-----

三、計算證明題:請完整寫出計算證明過程,若過程不完整則部份給分。共17分。

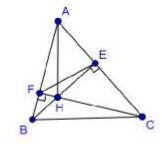
$$\mathbf{Q}\frac{a}{2} + \frac{b}{2} + \frac{g}{2} = 90^{\circ} \cdot : \tan(\frac{a}{2} + \frac{b}{2}) = \tan(90^{\circ} - \frac{g}{2})$$

$$\Rightarrow \frac{\tan\frac{a}{2} + \tan\frac{b}{2}}{1 - \tan\frac{a}{2}\tan\frac{b}{2}} = \cot\frac{g}{2} = \frac{1}{\tan\frac{g}{2}}$$

$$\Rightarrow \tan \frac{a}{2} \tan \frac{g}{2} + \tan \frac{b}{2} \tan \frac{g}{2} = 1 - \tan \frac{a}{2} \tan \frac{b}{2}$$

$$\Rightarrow \tan\frac{a}{2}\tan\frac{b}{2} + \tan\frac{a}{2}\tan\frac{g}{2} + \tan\frac{b}{2}\tan\frac{g}{2} = 1 \quad \text{#$\frac{1}{2}$}$$

(2)


$$\frac{\sin\frac{a}{2}}{\cos\frac{b}{2}\cos\frac{g}{2}} + \frac{\sin\frac{b}{2}}{\cos\frac{g}{2}\cos\frac{a}{2}} + \frac{\sin\frac{g}{2}}{\cos\frac{a}{2}\cos\frac{b}{2}}$$

$$= \frac{\cos(\frac{b}{2} + \frac{g}{2})}{\cos\frac{b}{2}\cos\frac{g}{2}} + \frac{\cos(\frac{g}{2} + \frac{a}{2})}{\cos\frac{g}{2}\cos\frac{a}{2}} + \frac{\cos(\frac{a}{2} + \frac{b}{2})}{\cos\frac{a}{2}\cos\frac{b}{2}}$$

$$= \frac{\cos\frac{b}{2}\cos\frac{g}{2} - \sin\frac{b}{2}\sin\frac{g}{2}}{\cos\frac{b}{2}\cos\frac{g}{2}} + \frac{\cos\frac{g}{2}\cos\frac{a}{2} - \sin\frac{g}{2}\sin\frac{a}{2}}{\cos\frac{g}{2}\cos\frac{a}{2}} + \frac{\cos\frac{a}{2}\cos\frac{b}{2} - \sin\frac{a}{2}\sin\frac{b}{2}}{\cos\frac{g}{2}\cos\frac{g}{2}}$$

$$= 3 - (\tan\frac{b}{2}\tan\frac{g}{2} + \tan\frac{g}{2}\tan\frac{a}{2} + \tan\frac{a}{2}\tan\frac{b}{2}) = 3 - 1 = 2$$

- (1) 12 (3分)
- (2) 15 (3分)

(1)

$$\mathbf{Q} \angle BFC = \angle BEC = 90^{\circ}$$

:: B, C, E, F 四點共圓且 BC 為直徑

$$\overline{EF} = \overline{BC} \sin \angle ACF = \overline{BC} \cos A = 20 \times \frac{3}{5} = 12$$

(2)

$$\mathbf{Q} \angle AFC = \angle AEB = 90^{\circ}$$

 $\therefore A, E, H, F$ 四點共圓且 \overline{AH} 為直徑

$$\overline{EF} = \overline{AH} \sin \angle EAF = \overline{BC} \cos A$$

$$\overline{AH} = \overline{BC} \cot A = 20 \times \frac{3}{4} = 15$$