高雄市立高雄高級中學 110 學年度第一學期高二自然組第一次期中考數學試題

一、 多重選擇題(每題 6 分,共 18 分,錯一個選項得 3 分,錯兩個選項得 1 分,三個以上得 0 分)

1. 設 $0 < \theta < \frac{\pi}{2}$,若 $\sin \theta - \cos \theta = \frac{1}{2}$,則下列哪些選項正確?

(A).
$$\sin 2\theta = \frac{3}{4}$$

(B).
$$\cos 2\theta = \pm \frac{\sqrt{7}}{4}$$

(C).
$$\sin \theta + \cos \theta = \frac{\sqrt{7}}{2}$$

(D).
$$\tan \frac{\theta}{2} = -2 + \sqrt{7}$$

(E).
$$\cos(\theta - \frac{\pi}{2}) = \frac{\sqrt{7} + 1}{4}$$

2. 右圖為函數 $y = a\sin(bx+c) + d$ 的部分圖形,其中 $b > 0, -\frac{\pi}{2} \le c \le \frac{\pi}{2}$, $A = (\frac{1}{2}, 0)$, $B = (\frac{7}{6}, 0)$,

則下列哪些選項正確?

(A),
$$a = 2$$

(B).
$$y = a\sin(bx+c)+d$$
 的週期為2

(C).
$$c = \frac{\pi}{3}$$

(D). 此函數圖形對稱於直線
$$x = \frac{23}{6}$$

- (E). 將函數 $y = a\sin bx + d$ 水平右移 $\frac{\pi}{3}$ 單位可得 $y = a\sin(bx+c) + d$
- 3. 關於下列函數周期的判斷,哪些選項正確?

(A).
$$f(x) = \sin(-2x+5) - 1$$
的週期為 π

(B).
$$f(x) = (2\sin x + \cos x)(\sin x - 2\cos x)$$
 的週期為 π

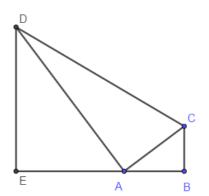
(C).
$$f(x) = |\tan x + \cot x|$$
 的週期為 π

(D).
$$f(x) = \sin^3 x - \frac{3}{4} \sin x$$
 的週期為 2π

(E).
$$f(x) = \tan^2 x + 100 \tan x + 5\pi$$
 的週期為 π

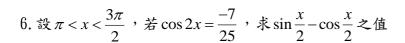
1. 如右圖,已知 $\angle ABC = \angle CAD = \angle AED = 90^{\circ}$,若 $\overline{AB} = 4$, $\overline{BC} = 3$, $\overline{AD} = 12$, 試求 $\sin \angle CDE = ?$





- 2. 將 $y=r\cos x$ 的圖形水平右平移 h 單位,得 $y=2\sqrt{3}\cos x+6\sin x$,其中 $0\leq h\leq 2\pi$, r>0 ,求數對 (r,h)=?
- 3. 設 $a = \frac{\pi}{2} 1$, $b = \cos 1$, $c = \cos 2$, $d = \cos 100\pi$, 則 a, b, c, d 由大而小的關係依序為何?

5. 設 $0 < x < \pi$,求所有滿足方程式 $4\cos^2 x + 2\sqrt{3}\sin x \cos x - 2\sin^2 x = 4$ 之解 x



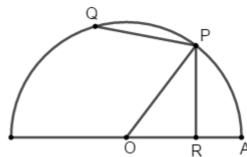
為直徑 A

7. 如右圖,扇形 AOB 中,已知半徑 $\overline{OA} = \overline{OB} = 4$, $\angle BOA = 120^{\circ}$,若以 $\overline{OA}, \overline{OB}$ 為直徑

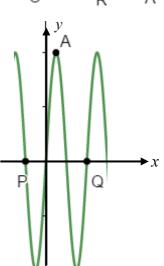
8. 如右圖,設半圓圓心為O,半徑 $\overline{OA}=1$,若P,Q為半圓上的點滿足 $\angle QOP=\angle POA$ 且P作直線OA 垂線的垂足為R,試求

 $\overline{OR} + \overline{PQ}$ 的最大值

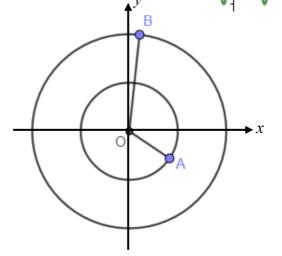
9. 設 $0 < x < 2\pi$,0 < k < 1,則滿足 $\sin 6x = k$ 的所有實根總和為何?



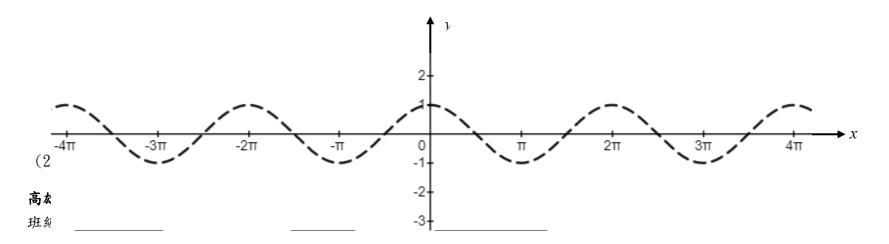
10. 有關函數 $f(x)=2\sin 4\pi x$ 的部分圖形如右,已知 A 為圖形的最高點, P,Q 為圖形與 x 軸的交點,若 ΔAPQ 的面積為 α ,方程式 $2\sin 4\pi x=\frac{2}{3}x$ 實根個數為 β 試求數對 $(\alpha,\beta)=?$



- 11. 右圖為以O為圓心的兩同心圓,其半徑分別為1,2且A,B分別落在兩圓上,若A點座標為(a,b)且 $\angle AOB = 120^{\circ}$,則B點座標為下列哪個選項?(單選)
 - (A). $(-a \sqrt{3}b, -\sqrt{3}a b)$
 - (B). $(a \sqrt{3}b, \sqrt{3}a + b)$
 - (C). $(-a-\sqrt{3}b,\sqrt{3}a-b)$
 - (D). $(-a-\sqrt{3}b,\sqrt{3}a+b)$
 - (E). $(a \sqrt{3}b, \sqrt{3}a b)$



- 12. 設四邊形 ABCD 四點共圓且直徑 \overline{AC} 長為 2 ,若 $\overline{AB} \overline{AD} = \frac{\sqrt{7}}{2}$, $\overline{CD} + \overline{BC} = \frac{3}{2}$, 試求 \overline{BD} 之長 三、證明做圖題(共 14 分)
- 1. 已知 α , β , γ 為銳角,若 α + β + γ = $\frac{\pi}{2}$,試證 $\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1$ (5 分)
- 2. 已知 $y = \cos x$ 的圖形如下:
 - (1). 試利用 $y = \cos x$ 的圖形做出 $y = \cos x |\cos x|$ 的圖形(**討論 4 分,做圖 2 分**,直接作在下列圖上)



一、 多重選擇題(每題6分,共18分,錯一個選項得3分,錯兩個選項得1分,三個以上得0分)

1.	ACDE	2.	ABD	3.	ABE	

二、填充題

格數	1	2	3	4	5	6	7	8	9	10	11	12
總分	8	16	24	30	36	42	48	54	58	62	66	68

1.	<u>56</u> <u>65</u>	2.	$(4\sqrt{3},\frac{\pi}{3})$	3	3.	d > a > b > c
4.	$\frac{\sqrt{3}}{3}$	5.	$\frac{\pi}{6}$	6	3.	$\frac{3}{5}\sqrt{5}$
7.	$\frac{8}{3}\pi - 2\sqrt{3}$	8.	$\frac{3}{2}$	9	9.	11π
10.	$(\frac{3}{4}, 23)$	11.	(C)	1	12.	$\sqrt{3}$

三、證明做圖題(共14分)

1. 已知
$$\alpha$$
, β , γ 為銳角,若 α + β + γ = $\frac{\pi}{2}$,試證 $\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1$ (5分)

$$\therefore \alpha + \beta + \gamma = \frac{\pi}{2} \Rightarrow \alpha + \beta = \frac{\pi}{2} - \gamma \qquad \therefore \tan(\alpha + \beta) = \tan(\frac{\pi}{2} - \gamma)$$

$$\Rightarrow \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \cot \gamma = \frac{1}{\tan \gamma} \qquad \Rightarrow \tan \alpha \tan \gamma + \tan \beta \tan \gamma = 1 - \tan \alpha \tan \beta$$

 $\Rightarrow \tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1$

2. (1).
$$y = \begin{cases} 0 & \cos x \ge 0 \\ -2\cos x & \cos x \le 0 \end{cases}$$

2. (2) ::
$$\begin{cases} y = \cos x - |\cos x| \\ y = -\frac{1}{6}(x+7) \end{cases}$$
 有 5 個交點

∴ 方程式 $\cos x - |\cos x| = -\frac{1}{6}(x+7)$ 有 5 實根

